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Received 28 September 1992, in final form 10 September 1993 

Absbact A new analysis of the Poisson Structure of the Liouville field theory (LFT) in an 
infinite volume is presented. The second Poisson structure of the Korteweg-de Vries equa- 
tion is thoroughly investigated as an essential part ofthe approach. and a variety of correct 
Poisson brackets is found. This (along with other causes) leads to a variety of correct LFT 
Poisson structures. Special attention is paid to the most important LFT property ofconfor- 
mal invariance. In particular, a maximal conformal group suitable for the adopted LFT 
phase spaces is found, and various Hamiltonian~representations of the conformal algebra 
are described. The properties of local commutativity and canonicity are proved. 

1. Introduction 

In this paper we consider the Liouville equation 

O& + 4 eZQ = O  = a2iat2 - a 2 / a 2  (1.1) 

for a real scalar field @(t ,  x) as a non-trivial model of the massless field theory in 
two-dimensional space-time, the so-called Liouville field theory (LFT). In particular, 
the space-time coordinates vary on the whole real axis, i.e. tcR,  xclw. The problem 
of quantization of LFT was discussed in [I-61, but the results achieved in this 
direction leave much to be desired. The canonical structure of LFT was considered 
in a number of papers [l,  7,8]. In this paper we present a new analysis of the LFT 
Poisson structure in the hope that the one developed here will be helpful for further 
quantization purposes. 

The Hamiltonian description of LFT is formally given as follows. First, equation 
(1.1) must be provided with initial data 

( 1.2) 
a 
at 

+(x) = - @ ( t ,  x)l,=o. pW=@(t, x)lt=o 

The functions p(x) and ~ ( x )  are considered as coordinates on the infinite-dimensional 
phase space of the model. Second, the Poisson structnre is defined by the canonical 
brackets 

I+(.), P(Y)j =&-.I9 {n(x), n(y)I = {o(x), 4wl  =o. (1.3) 

Finally, the Hamiltonian 

H= d x ( ~ + 2 ( x ) + $ ( q ’ ( x ) ) ’ + 2 e Z ’ ‘ x ’ )  J 
0305-4470/94/030955+22$07.50 0 1994 IOP Publishing Ltd 

(1.4) 
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generates the equation of motion (1.1) in the usual way. This scheme is filled with 
mathematical meaning in the main body of the paper. 

In the next section we shortly discuss the Cauchy problem (l.l), (1.2), essentially 
following [9], but our smoothness requirement for the Cauchy data is somewhat 
stronger. In section 3 we specify the boundary conditions and describe the space A 
from which various LFT phase spaces are extracted later on in section 7. We also define 
a bijection, J-' : ( E ,  9) + (U+, U-, T) ,  which provides a partial separation of modes. 
The functions U+(x), U-(x) and the 2 x 2 matrix 7' may be regarded as alternative 
coordinates on the respective phase space. In section 4 we discuss the conformal sym- 
metry of LFT, and in particular, we find a maximal conformal group which acts in our 
phase spaces. 

The canonical brackets (1.3) suggest that the function U+@) (or U-(x)) has the 
Poisson bracket identical with that of the Korteweg-de Vries equation (mv) [ 10, 11 1. 
So in section 5 we thoroughly investigate the second Kdv Poisson structure which 
is, however, not fixed by (1.3) uniquely: there is a whole variety of correct Poisson 
structures. 

In section 6 local commutativity and canonicity of the fundamental field is proved. 
In section 7 Hamiltonian representations of the conformal algebra are described for 
various phase spaces and various non-degenerate Poisson structures on them. 
Our approach to the LFT Poisson structure differs from that of [7,8] in the following 

respects: 
(1) We consider LFT in 'a general position'. In particular, the LFT phase space 

adopted in [7,8] may be regarded as a subspace of some of our phase spaces (its 
codimension being 22). In fact, we exclude from our phase spaces a set of codimension 
1 which contains the phase space of [7,8]. Thus, the present paper i d  [7,8], so to 
speak, do not intersect. 

(2) We introduce and discuss a whole variety of Poisson structures compatible with 
the fotmal formulae (1.3). 

(3) We consider both regular and singular solutions to the Liouville equation. 

2. Cauchy problem for the Liouville equation 

A 'general solution' to the equation (1.1) can be represented in the following form [9]: 

q x + ,  x-) = -log1 f+l  ( k ) f - l  (x-) +f+z(X')f-z(x-)l (2.1) 

where the cone variables 2 = x f r, 8, = ;(a/axi a/at )  are introduced, and the real- 
valued functionsfhk satisfy the condition 

W f i l  ,fi2) = f l  (2.2) 

( W ( A  g) is the Wronskianfg'-f'g). Fo-nnula (2.1) implies an analogous representation 
for the Cauchy data: 

9 w  = -log1 f+l (X1f-I (4 +f+z(x)f-z(x)I 
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The quantities CD, o, and R remain unchanged if the functionsf,!, fiz are replaced 
according to the rule 

(f+l(X).f+Z(X)) + ( f + l  (X),f+z(x))T& 

(2.4) 

where &ER, E'= 1; Tis a real x-independent 2 x 2 matrix with det T= I. 

Smqothness requirement. We consider only those solutions (Cauchy data) to the 
Liouville equation (1.1) which admit the representation (2.1)-(2.3) withftkECm(R), 
k= 1, 2. 

The following definition and proposition 2.1 express this requirement explicitly in 
terms of the Cauchy data. 

Defini/ion. Functions x(x) and q(x) are said to be proper Cauchy data if there exists 
a closed set of isolated points K c R  (empty, finite or countable) such that 
n, 9€Cm(R\K), and in some neighbourhood of every point X ~ E K  the following rep- 
resentation holds: 

1 4(x-x;)' 
+)=--log + Pi(x) 2 1-v: (2.5) 

where lvil < 1 ,  the functions ni, qi are Cm-smooth in the neighbourhood of xi, and 
ii.i(x;)= q,(xt)=O. 

Proposition 2.1. (a) LetfiI,ft2sCm(R) and the condition (2.2) be satisfied, then the 
Cauchy data given by the formulae (2.3) are proper. 

(b) Let the Cauchy data n(x), q(x) be proper, then there exist, unique up to 
transformation (2.4), functionsf, I ,fi2E Cm(R) satisfying the condition (2.2) and such 
that the representation (2.3) holds for n(x) and q(x). 

This proposition is in fact equivalent to the unique existence theorem for the Cauchy 
problem (l.l), (1.2) with proper Cauchy data, because the same functionsfik partici- 
pate in formula (2.1) for @. Singular points of the Cauchy data generate singular curves 
of the solution CD, which are time-like and do not intersect each other. In particular, 
non-singular Cauchy data generate a non-singular (smooth) solution to the Liouville 
equation [9, 12,131. 

3. Boundary condition and the space A 

It follows.from the equation~of motion (1.1) that the functions U ,  =(~*CJ) ' -&@ 
depend only on one variable, xc or x-: U+= U+(x'), U-= U-(X-). Hence, they can be 
expressed in terms ,of the Cauchy data, 

(3.1) 



958 I M Khamitov 

or the functionsftk [9, 12, 131, 

-fLr(x) + U*(x)f*dx) .=O k=1,2. (3.2) 

Due to our smoothness requirement, U+EC"(IW). Now we impose the boundary 
condition on the fields involved by requiring rapid decrease of U, : 

U,  ES(W (3.3) 

where S(W) is a Schwartz space of Cm-smooth real functions of XER, which decrease 
with all their derivatives faster than any power of x-' when 1x1 --f CO. In proposition 
3.1 we shall make this boundary condition explicit, but to formulate it we need to 
introduce a useful notation similar to o(x). Let q(x) be a Cm-function such that q(x)  = 
0 if x<O, and q(x)=1 if x>l.  Then forfcCm(W), we writef(x)=s+(x) if rfcS(R), 
and f(x) =s-(x) iff(-x) =s+(x). For example, tanh x = 1 + s+(x) = -1 +s-(x). 

Proposition 3.1. Let z and 9 be proper Cauchy data, then (3.3) is equivalent to one of 
the following four types of boundary behaviour of z and 9: 

-27, tanh U- 
x-q- X(X)= + s+(x) = - +s-(x) 

(x - q + ) 2 -  r: - i/B: 

tanh U+ -21.- 
X(X)=- +s+(x)= +s-(x) 

x-q+ (x- q-)2- ;? - l/& 

+s*(x) 
-22 * r(x) = 

(x- q+ )Z - r: - 1/B: 

( 3 . 4 4  

(3.46) 

(3.44 

(3.4d) 

p(x) -log(B* I ( x - q + ) ' -  2: - 1/& I )  + s i  (x). 

Here B,  > 0 and the constants U * ,  q+ , r+ can take arbitrary values. The corresponding 
solution CD has the following asymptotic behaviour in each case: 

(a) Q(t, x)=-log(2[ (x-q+) cosh U+ - t  sinh ut [ ) + s , ( x )  

(b) q t ,  x) = -log(B+l(x-q+)'- ( t -z+)2-  1/B: I )  +s+(x) 

=-log(2[(x-q-)coshu--tsinhu-I)+s-(x) 

@ ( t ,  x)=-Iog(2[(x-q+) cosh U + - t  sinhu+[)+s+(x) (c) 
= -log(B- [ (x- 4-y-  ( t  - 2-)2- 1/B2 I) +s-(x) 

(d) Q(t ,  x) = -lOg(B+ I ( X - q + ) ' -  ( t -  ~ 1 ) ~ -  1/B: 1) +s*(x). 
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The proper Cauchy data obeying the boundary condition (3.3), or equivalently 
(3.4), constitute a space which seems to be an appropriate candidate for the phase space 
of the model, but we want to exclude from this space some sets of codimension 1, 
namely we require that both Schrodinger equations (3.2) should not have a virtual 
eigenvalue (the opposite was assumed in [ 7 , 8 ] ) .  To make this requirement more exact 
and introduce some notations we are going to discuss the onedimensional Schrodinger 
equation in more detail. 

The equation -f"(x) + U ( x ) / ( x ) = O  with UeS(R) has solutions exhibiting the fol- 
lowing asymptotic behaviour: 

y r ( x )  = 1 +s-(x) = a + px  +s+(x) 

W?(X) = x +  s-(x) = y + s x  +s+(x) 

x ] ( X )  = 1 +s+(x) = 9 - p x  + i ( x )  

x z ( x )  = x  +s+(x) = - y  + ax+$- (x )  

where 

a $ - p y = l .  

Let us define some subsets of S(R) (n=O, 1,2,. . . ): 

(3.5) 

M,= { U1 UeS(R), rY is unbounded and has exactly n zeros} 

D,= { U1 UeS(R) ,  yryis bounded and has exactly n zeros]. 

The standard locally convex topology on S(R) [I41 is meant in the following 
proposition which collects some simple properties of the sets M., D,. 

Proposition 3.2. 

if n fm. 
(2) M. is open and simply connected. 
(3) D. is closed, simply connected, and codim On= 1. 
(4) D,, U 0.- 1 is a boundary of M. (LI = +), i.e. 0, U 0,- =closure of M. minus 

(5 )  D, separates M, and M.+ I ,  i.e. any continuous curve w :  10, I ]  + S(R) beginning 
M" . 

in M. (w(O)eM,) and ending in M n + ]  (w(I)eM,+, ) ,  intersects D. at least one time. 

For the potential 
m 

U s  U M. 
n=0 

we can define another two solutions to the Schrodinger equation by the formulae 

wW)= IPI -"2n(x)  x ( x )  = 181 - '"xl(x). (3.7) 

Note that if UEM,, then signp=(-l)"= W(x, w). 
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Let us consider a set 
m 

where PSL2=SL2(R)/{iid). A' is an open and disconnected subset of 
S(R) x S(R) x PSh, the triples (U+, U- ,  T )  being its points. The phase space of LFT 
will be identified in section 7 with some subsets of A, which will be defined by some 
subsets of P&. Such a reduction O C A  is necessary to obtain non-degenerate Poisson 
brackets. 

The formula (3.8) must be accompanied with an injective mapping 

J :  (U+, U-, T )  + (n, p) (3.9) 

which enables the Cauchy data li, p to play a role of alternative coordinates on A'. To 
define J we only need to specify particular f+, and ff2 in ( 2 4 ,  (2.3) provided that 
U+, U- and T are given. Define ( U ,  E M n A )  

( k l  (x),f+z(x)) = (x+(x),  (-1)"' W+(X)) =-Q+(x) 
(3.10) 

then the representations for Q (2.1) and z, 9 (2.3) take the form 

Cb(X+, x-) = -loglSl+(x+)M-(x-)l (3.11) 

q(x) = -logl-Q+(x)m-(x)l 

a(x) = - a; (x) T S - ( x )  - Q , ~ ( X )  W' (x) i a+ (x) 7n-h) 
(3.12) 

The formulae (3.10), (3.12) give a desired definition of the mapping J (3.9) which 
appears to he an injection, as can be learned from proposition 2.1. 

Proposition 3.3. Let 

and the corresponding Cauchy data K, p have exactly n points of singularity, then: 
(a) a, d>O, b, c>O (a, d<O, b, c < O ) - n = n + + n - ;  
(b) a , d > O , b , c < O ( n , d < O , b , c ~ > O ) * n = n + + n - + 2 ;  
(c) all other cases-n=n++n-+I. 

Note also that if a and p are nonsingular, then U , E M ~ ,  in particular, the virtual 
eigenvalues are automatically absent. 

Proposition 3.4. The Cauchy data exhibit the following boundary behaviour depending 
upon 
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(a) b=O, c=0-(3 .4a) ;  
(b) b:O, cZOo(3.46); 

(d) bfO, cfO e (3.44. 
(c) bfO, c = 0 9 ( 3 . 4 c ) ;  

We show in the appendix the expressions for U*, q+, r+ ,  B* via T, a,, pi, y+ and 3* 
in each case. These expressions permit the matrix T to be extracted from the given n 
and q, thereby, together with (3.1), defining the mapping inverse to (3.9). 

4. Conformal symmetry 

The conformal group Conf(M’)=Diff?(R) x DiffY(R) of the two-dimensional 
Minkowski space M2 consists of mappings F: M2 + MO2 which have the following form: 

- + x +y+=F+(x+)  x + y - = F - ( x - )  

where F* are arbitrary orientation-preserving Cm-diffeomorphisms of R. The cor- 
responding conformal algebra conf(M2) =Vectm(R)@Vectm(R) consists of vector fields 
X on Mz which have the form 

x=x+(x+)a+ +,wx-)a- X”€C“(W). 

The Liouville equation (1.1) is invariant against the conformal transformations, 
provided they act on cD(x+, x-) as follows (F=F’x F-EConf(M2)): 

@,‘(X+, x - )  =ay+@+), F-(x-))  + t log(aF+(x+) aF-(x-)) .  

The potential U,  is non-trivially transformed only by the component F* of the 
element F + x F - E C ~ ~ ~ ( M ’ ) .  The formulae are the same for.both signs, so in what 
follows we occasionally omit the ‘f’ indices. For FEDiff;“(R), we have 

The group Conf (MO2) and the algebra conf(M2) are too big to have physical meaning. 
Appropriate for our purposes is the conformal subgroup @ = a x  9cConf(M2), where 

9 = {Fl FeDiff?(R), P E S (  R)} c Diff ;O(R). 

We shall also make use of the subgroup 6, =a, x 9, c 6, where 

9*={Fl  FEDiffY(R), F”eS(R), F’(+)=F’(-)} 

The respective conformal subalgebras q e  ~*=Y,gY,c~==’@Ycconf(M’), 
where 

F’(f) = lim, - +m F’(x). 

I d 
dx 
--,X“(.)€S(R) 

I d 
- , X ” ( . ) e S ( [ W ) , X ’ ( + ) = X ’ ( - )  . 
dx 
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The algebra ^Y has two non-trivial 2-cocycles: 

o ( X ,  Y ) = i  dx(Y(x )Y ' (x )  - X ( x )  Y"(x)) (4.2) J 
h ( X ,  Y) =X( +) Y(-) - Y(+)X'(-) .  (4.3) 

The cocycle ui vanishes on the subalgebra Y,. 
Both the algebras d and d, are satisfactory from the physical point of view 

because they include the generators of time translations (x" (x )  E 1, X ( x )  -I), space 
translations ( x ' ( x )  = 1, X ( x )  = I), Lorentz rotations (X'(x) = x ,  X ( x )  = -x), and 
dilatations ( x ' ( x ) = x ,  X ( x ) = x ) .  Correspondingly, the conformal groups 6 and 6* 
include space-time translations, Lorentz rotations, and dilatations. 

It is obvious from (4.1) that if UES(W) and FEO, then UFeS(R).  The converse of 
this statement is also true: 

Proposition 4.1. Let F be an orientation-preserving C'-diffeomorphism of W and 
UsS(R). If U F ~ S ( R ) ,  then FEB. 

Thus, D is a maximal group of the diffeomorphisms acting in S(W) by the formula 
(4.1), correspondingly, 6 is a maximal conformal group suitable for our choice of the 
phase spaces. 

Proposition 4.2. (a) The sets M,, On, n=O, I, 2, .  . . are orbits of the group 9 with 
respect to its action (4.1) in S(W). 

(b) The sets M., n=O, I ,  2,.  . .are orbits of the group 9, with respect to its action 
(4.1) in S(R); and for any U, VEM,,  there exists one and only one diffeomorphism 
FsO, such that UF= V. 

(c) The set D- (n=O, 1,2, . . . ) is a union of the orbits of the group B,+, each of 
them being distinguished by the additional condition a =constant (if UED,,, then a #O, 
sign a=(-I)"). 

This proposition, in particular, means that only the whole sets M, (not their proper 
subsets) can participate in the construction of the phase space of the model to preserve 
the conformal invariance. 

It follows directly from (4.1) that we have for FEO 

p F =  j3(F(+)F(-))'P (4.4) 

~ " ( x )  = ~(F(x))(F'(x))-'~(F'(+)/F'( -))-'I4 (4.5) 

x"(x) =x(F(x))(F'(")-'/7F'(+)/F(-))''4. (4.6) 
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The response of the matrix T to the conformal transformations can he obtained from 
the condition of commutativity of the diagram: 

J 
(U+, U-, T )  - (n. p)-@ 

l F = F + x F -  ~ l F = F + x F -  

(U:, UT, T f j  - (nF, pF)-@F 

The result is: 

5. Second Kdv Poisson structure 

Formal application of the canonical brackets (1.3) to the potentials U,  (3.1) yields 

{ U*(x), U t ( U ) }  = - ( w c )  + cJt(y))G’(x-y)  + m x - y )  (5.1) 

{U&), U&)} = (U-(x)+ U-(y))G’(x-y) - W ( x - y )  (5.2) 

{U+(x), U-(Y)}=O. (5.3) 
In this section we investigate.the bracket (5.1) keeping in mind that the bracket (5.2) 
can be obtained from (5.1) by a mere reflection of the total sign. For this reason, we 
omit the index ‘+’ in the notation of U+ and in the notation of other quantities which 
inherit it from U+. The bracket (5.1) is known as the second one in the hierarchy of 
Kdv brackets [IO, 1 I]. The overall Poisson structure will he described in the next two 
sections.~ 

Let d d b e  a GBteanx derivative of a C’-class functionalf: M +  R which is defined 
on an open set McS(R) .  It is linear and confinuous with respect to V d ( R )  [15], so 
it can be written in the integral form: 

which is to be regarded as a definition of the variational derivative Sf/SlJ(x).  Let us 
introduce another two differential operators 

di f= lim (a/ax)(Sf/SU(x)) 
x- toa 

in those cases when this limit makes sense and exists. For example, this is the case if 
(a2/ax’)(Sf/su(x))~S(R) as a function of x. 

Let us define the algebra B ( M )  of admissible functionals (observah1es)fdefined on 
an open set M c S ( R )  by requiring, the fulfilment of the following recursive conditions: 

( I )  f is a C’-functional with respect to the variable U E M :  further, (a*/G?)(Sf/  
aU(x))eS(R) as a function of x, and the condition 2 is fulfilled; 

(2) the functionals d+f, d-f and dvf ,  VES(R) satisfy the condition 1, and 
(dtdv- dvd* If=O, VVES( R). 
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The operators d+ and d- do not commute as the following example demonstrates. Let 

f(U) = f SSdx dy U(x) U(Y)XY tanh(x + y )  

thenfeO(M) for any open M ,  and d+d-f=-d-d+f=l (compare [16]). However, no 
one of the functionals essential to our theory shares this property, therefore, one can 
reduce the algebra of admissible functionals to the algebra U(M) c O ( M )  by imposing 
an additional condition 

(d$d!-dLd$)f=O k ,  I= 1,2,3, . 
or by inserting the condition (d+d--d-d+)f=O into item 2 of the above recursive 
definition. As a matter of fact further reduction to the algebra U”(M)  cO’(M),  whose 
elements satisfy the condition (d: -d*)f=O, k =  1,2,3,. . . is possible (see the remark 
after proposition 5.1). Altematively, the algebra U’(M) may be defined by inserting 
the condition (d+-d-)f=O into item 2 of the above recursive definition. 

Let us examine whether the functionals of U which were introduced by (3.5), (3.7) 
are admissible. It i s  easy to verify that the functionals y , ( x ) ,  x , (x ) ,  tqz(x), and x z ( x )  
are those of C’-class and their variational derivatives look as follows (i= 1,Z): 

(5.4) -- 6n(x) - -+-y)wi (u) t ull(x) n ( Y )  - w ( x )  Y r ~ l  
S Q Y )  

(5.5) 

where O ( x )  is a step function: O(x)=l  if x>O, and 0(x)=O if x<O. It follows from 
the formulae a = W ( u r ~ , x ~ ) .  P = W ( X I , V ~ ) ,  y=W(vz ,xz ) .  and 9=W(xl ,vIz)  that 
the functionals a,  p ,  y ,  and 9 are of C’-class too, their variational derivatives being 

It immediately follows from these formulae that the functionals yL. ,, xz(x) ,  a,  y ,  and 
9 are not admissible, because their variational derivatives grow quadratically when 
IYI +Co. 

Proposition 5.2. p ,  wl(c), xl( c)cO‘(M)  and ~ ( c ) ,  x ( c ) ~ O n ( M )  for any open set 
ca 

and any <&(a), where yl(c)=jdxc(x)tyI(x),  etc 

Note that only, ~ ( x )  and ~ ( x )  participate in the formulae (3.11), (3.12) for the 
fields K, p and @. Let us give a sketch of the proof, omitting smoothing for the sake 
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of brevity. Rewrite the formulae (5.4) and (5.5) for i= 1 as follows: 

and complement them with their limiting forms: 

d + P = P  d+Vi(x)=O d+Xi(x) =Xi(x) 

d-P=-p d- vi (x) =-~ri(x) d-xl(x) =O. 
(5.9) 

The formulae (5.6)-(5.9) show that various derivatives of the functionals I/p, vl(x) 
and xl(x) arepolynomially expressed via the same functionals. It is readily seen from 
(5.9) that the differential operator of thefirst order d+d- - d-d+ annihilates the function- 
als 1/P, vl(x) and xl(x), and, due to the polynomial character of the formulae (5.6)- 
(5.9), all their derivatives, as is required by the recursive definition. It is.analogously 
verified that the differential operators of the firs[ order didv-dvd. annihilate I/P, 
yl(x), jl,(x) and all their derivatives. This proves the proposition in the part concerning 
the functionals P ,  yl(x) and xl(x). The rest of the proposition is analogously proved 
with the help of the following formulae ( U E M , ) :  

I d+p(x)=d-p(x) = -4 ~ ( x )  d+x(x)=d-x(x)= sx(x). 

The bracket (5.1) is a formal consequence of the following bracket which is defined 

(5.10) 

on the algebras of admissible functionals O(M),  O'(M) and O"(M):  

( f, 91 = ( f, E) + ( L  E> + C<L d 
where CER and 

<A g>=d+f d-g-d-fd+g. 

The last term in (5.10) vanishes on the algebra U " ( M ) .  
It is quite obvious that the bracket (5.10) is bilinear, antisymmetric and satisfies the 

Leibniz identity. Not obvious are the Jacobi identity and the properties of degeneracy. 

Proposilion 5.2. (a) The bracket (5.10) satisfies the Jacobi identity in the case of the 
algebra O ( M )  if and only if C= a or C= - a .  (b) The bracket (5.10) satisfies the Jacobi 
identity in the case of the algebra O'(M)  for any CER. 
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The proposition 5.2 is a consequence of the following equality (compare this with the 
case of the first Kdv Poisson structure [16, 171): 

{ { A  g}, h}  +cycle= (1/16- Cz)((J g>(d+d- -d-d+)h + cycle. 

Proposition 5.3. (1) Let the algebra of admissible functionals be 0". Then the Poisson 
bracket (5.10) is non-degenerate at every point of the open set 

6 M. 
n-0 

and the degree of degeneracy is equal to 2 at every point of the complementary set 

c 0.. 
n-0 

(2) Let the algebra of admissible functionals be 0 or U. 
(a) If C= 4, then the Poisson bracket (5.10) is degenerate at every point of S(R), 

the degree of degeneracy being equal to 1. The functional p is an annihilator (central 
element) non-trivial at every point of S(R). 

(b) If C= -4, then the Poisson bracket (5.10) is non-degenerate a t  every point of 
the open set 

6 M, 
n-0 

and the degree of degeneracy is equal to 2 at every point of the complementary set 

6 0,. 
n-0 

(c) If C'#t ,  then the Poisson bracket (5.10) is non-degenerate at every point of 
the open set 

6 M" 
"-0 

and the degree of degeneracy is equal to ~1 at every point of the complementary set 

c D.. 
*-0 

To prove this proposition let us first rewrite the Poisson bracket (5.10) as follows: 

sf A- sg +d+f(: d+g+Cd-g)-dJ((td-g+Cd+g) (5.11) 

where 

d 3  d 
d x 3  dx 

A = $  - - ~ U ( X ) - -  U'(X). (5.12) 
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It follows from (5.11) that if g is an annihilator of the bracket (5.10) at the point U 
(i.e. 6g/6U(x)lLif0 as a function of x,  and {f; g}l.=O for any admissible functional 
f), then 6g/6U(x) is a solution to the equation 

A(6g/6U(x)) = O  (5.13) 

and satisfies one of the following boundary conditions: 

(a) 

(b) d+g=d-g(CO,B'withC=-i or@") 

( 4  , d+g=O,d-g=O (CO, with C'ZA).  

d+g= -d-g (algebras 0,B' with C= :) (5.14~) 

(5.146) 

(5 .14~)  

Let us introduce, in the space of solutions to the equation Ay(x)=O, two bases, 
{ YC , Y; , Y; } and { Yc,  Y: , YT }, which are fixed by the boundary conditions 

e(x)=xj+sI(x) j = o ,  1 , 2  

and an x-independent transition matrix 2 
2 

Yj'(x)= E K(x)z:. 

%(x) = V X X )  K(x) = V l ( 4  V d X )  ~ K(x) = V % X )  

Y c ( 4  =x:(x)  Y: (x) = x I (x)xz(x) Y:(x) =x:(x)  

k-0 

They have the explicit representation 

which is a consequence of the following simple proposition. 

Proposition 5.4. Ifyl(x) andy2(x) are arbitrary solutions to the equation -y"+ U(x)y= 
0, then Y(x)  =y,(x)y2(x) is a solution to the equation A Y(x) = 0, where A is given by 
(5.12). 

Resolve a solution to the equation (5.13) with respect to both bases {Yj'} and 
{FI: 

(5.15) 
+ T T  (YO, Y;  7 Y; )'= bJ: 7 Y: 9 Y2 ) z 

Consider the boundary condition (5.14~~). It is equivalent to the equalities 
y:=O,yT=-y;, therefore, the equality (5.15) turns into a system of linear equations 
to determine two coefficients, yo' and y: : 
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Taking into account (3.6), we see that for any U, the rank of this system is equal to 1, 
and a one-dimensional space of solutions is generated by the column 
(yz ,y:)r=(a,P)T.  Thus, wearriveat theconclusion that theequation (5.13)+(5.14~) 
always has only one independent solution for any UeS(R): 

-- sg - a  Y ~ W  + P ~ ( X I  = ax:(x) + ~xI(x)x+) =xl(x)n(x) .  
6 U(X) 

Comparing this with (5.6) we see that P can be chosen as an annihilator. The other 
assertions of the proposition 5.3 can be proved in the same way. 

The property of the operator A described in the proposition 5.4 makes it possible 
to evaluate the Poisson brackets involving one of the functionals P ,  yl(x),  x l (x) ,  y (x )  
or ~ ( x ) .  For instance, it immediately follows from (5.6), (5.9) and (5.1 1) that for any 
admissible functional f 

{ A  PI =(t  -C)(d+f+d-f)P. (5.16) 

This bracket may be useful in proving that the sets M,, and D,> are closed against the 
Hamiltonian flows. Similarly, for any admissible functional J we have 

6. Local commutativity and canonicity 

Let f( U+, U-, T )  be a functional defined on the space A’ (3.8). There is a natural 
notion of admissibility for such functional which includes the requirement of existence 
and commutativity of various ‘partial’ derivatives. According to the results of the previ- 
ous section, we have some freedom to choose the notion of admissibility with respect 
to the first and second variables. For the purposes of this section, it suffices to consider 
only the functionals admissible in the sense of U“ x 0“. For such functionals, define the 
Poisson bracket as follows: 

where {. , . }* is the Poisson bracket with respect to U*, described in the previous 
section (values of C+ do not matter here) 
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and {TBT} is a 4 x  4 matrix unknown for the present. In (6.1) and later on we use 
the tensorial notations customary for the inverse scattering transform method [18]. The 
brackets (5.1)-(5.3) are formal consequences of (6.1). 

The following brackets are essentially nothing but a tensorial form of (5.19)-(5.21): 

IQ+(x)p+(v)) =a+(x)oa+(.v)P(x-Y) 

{Q+(x)gQ-(Y)} =o {Q*(x)$T) =o  
{Q-(X)?Q-(Y)} = -P(x-v)~- (x)oQ-(Y)  (6.2) 

where p(x)=rTd(x)-r6(-x), the matrix r being of the form 

0 0 0  

.=f 4 0  -; 4 - 1 0  ; ;I. (6.3) 

Now we are going to~demonstxate that the condition of local commutativity of the 
fundamental field Q uniquely determines the bracket {TOT} missed in (6.2). Using 
the representation (3.11) for Q, we obtain 

{QW, x-), Q(Y+, Y - ) }  

=exp(@(x+, x-) +@(y+,y-)) x {Q+(x+)m-(x-), Q+(y+)m-(y-)}  

=exp(@(x+, x-)+@(y+, p)) 
x ({a+(x+)p+(Y+)} T O T -  a-(x-)sQ-(y-) 

+n+(x+)@a+(Y+) ' { T q q  I Q - ( x - ) @ w Y - )  

+n+(X+)OQ+(Y+) ' TOT-  { Q - ( x - ) p w - , ) )  

=exp(Q(x+, x-) + ~ y + ,  v-))~+(n+)~~+(y+)({~s 

+ P(X+ -yC)TO T -  T@ Tp(x- -y-)p-(x-) on-( U-). 
The condition of this bracket vanishing in the right space-time cone, 
x+-y+>O,x--y->O, gives 

{ ~ q ~ } = [ - r ' ,  TOTI 
(the square brackets designate the matrix commutator). The same condition in the left 
cone, x+--y+<O, x--y-<O, gives 

(TFT}=[r ,  T@Tl. (6.4) 

Fortunately, both these expressions for {TOT} are equivalent. The bracket (6.3), (6.4) 
equips P S L  with the structure of the Poision Lie group [19]. 

Now let us verify the canonicity of the fundamental field. The bracket {Q, @} can 
be represented in the form 

~~ 

{qX+, x-), qY+, y-)} =m+, x-; y+, y-)(e(x+-y+) - e(x- -y-)). 

2A(X+, x- ; x+, x-) = 1.. 

The canonical brackets (1.3) are equivalent to the equality 

(6.5) 
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In our case the quantity A has the following form: 

A(X+, x-; Y+, Y - )  
=exp(@(x+, x-) +@(y+, y-)) 

x Sl+(x+)TOS2+(y+)T. (9-8/2) ' Q-(x-)OSl-(y-) 

where 8 is a 4 x 4 unit matrix, 9 is a permutation, i.e. 

1 0 0 0  9=k,  ; ; B j . - 9 S 2 - i x - r ~ . - ( y - ) = * . ( y - ) ~ ~ - ( x - )  
so the condition (6.5) can be easily verified: 

2A(x+, x-; x+, x-) =exp(2@(x+, X - ) ) ( ~ + ( X + ) ~ - ( X - ) ) ~ =  1. 

While speaking about the canonical brackets, note should be taken that in the case 
of singular fields neither rc, 9 themselves nor their smoothed versions are admissible 
functionals. Indeed, in the singular case the field p(x) possesses integrable singularities 
at some points xj (see (2.5)), therefore, we can legitimately consider the smoothed field 

d E )  =Jdx 5 (X)V(X) E€S(W. 

The functional 9( 5) is differentiable with respect to U,, but, contrary to the definition 
of admissible functional, its variational derivatives are not smooth, e.g. in a neighbour- 
hood of the point xj we have 

The field x(x) possesses non-integrable singularities at the same points x,, therefore, 
we are even unable to define its smoothed version without further assumptions. Let us 
try the principal value regularization: 

x( E )  =v.p. 1.. 5 (x)n(x) 5 E S ( W  

The functional n( E ) ,  thus defined, is differentiable with respect to U,, but its variational 
derivatives are not smooth, e.g. in a neighbourhood of the point x, we have 

-- M E )  (y-Xj) logly-xjl. 
SU+(Y) 

However, the fundamental field Q(t,  n), after smoothing with respect to both variables, 
appears to be an admissible functional (@ possesses integrable singularities). 

I. Hamiltonian representation of the conformal algebra 

For X = X + 0 X - s d o 1 , ,  define 

Qx= dx (x'(x)U+(~)-X(x)U-(x)). J 
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Using (5.17), (5.18) and (6.l),-one can verify that &properly generates the action of 
d* on w&), x&), T, and consequently on the fundamental field CI (3.11). Further, 

{Qx,  Q Y ) = - Q w ,  v+A(X, Y )  (7.1) 

where A(X, Y ) = t ( w ( x ' ,  Y ' ) - w ( X ,  Y-))  (w is given by (4.2)). Thus, the mapping 
X-, -Qx is a Hamiltonian representation (in the algebra 0" x 0") of the conformal 
algebra d* centrally extended by means of the 2cocycle A. 

The Poisson structure (6.3), (6.4) on PSL2 is degenerate, and so i s  the total Poisson 
structure (6.1). In so far as the latter is non-degenerate on M,,,'s, its symplectic leaves 
are determined by those of PSL2. The symplectic Ieaves of PSL2 are described as 
follows. The condition b= c=O defines a subset of PSL2 which is a union of the zero- 
dimensional leaves labelled by a>O. For other leaves, b2+2#0, and the condition x =  
c/b=constant distinguishes one (if -oo<x<O) or two (if 06xGm) two-dimensional 
leaves. They are labelled by x and by the sign of a if 0 6 x 6 CO (we assume that b 2 0; 
ifb=O, then c>O;ifb=c=O, thena>O). 

The bracket (6.1) cannot generate the action of SI on T (4.7), so let us consider 
the algebra of admissible functionals 0' x U' and generalize the bracket (6.1) as follows: 

(7.2) 

where {. , . }* has the same meaning as in (6.1), but the constants Ci are now equal 
to ; the matrix {T@T} is given by (6.3), (6.4); 

0 0 0  
n=[{ -; U j 

(7.3) 

(the nondynamical real parameters p ,  U, v, q, s, hl , h2, kl , k2 appearing in (7.3), (7.4), 
will be specified later); and lastly the 'cap'-operation is defined as follows: 

(the upper 'f' correspond to indices of U*). The bracket (7.2)-(7.5) reduces to (6.1) 
for the functionals from 0" x B".' 

The bracket (7.2)-(7.5) is well defined on the set A' (3.1 I ) ,  because det Tis a central 
element for any values of parameters. Further, { PI}  = (something) X Pt for any 
functional f c U x  U. This means that the set A' and its subsets M,,, x M,_ x PSL2 are 
closed against the Hamiltonian flows. 

It is quite obvious that the bracket (7.2)-(7.5) is bilinear, antisymmetric and satisfies 
the Leibniz identity. 
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Proposition 7.1. The bracket (7.2)-(7.5) satisfies the Jacobi identity in the case of the 
algebra 0' x U' for any values of the parameters p ,  U, U, q, s, hi , b, k i  , k z .  

In contrast to the Jacobi identity, the properties of degeneracy depend on the values 
of parameters. We shall not discuss all variants but only those which admit the 
Hamiltonian representation of the conformal algebra 8. In these cases the situation is 
simple. 

Note that {f; b }  = b x (something) for any functionalf; so the condition b= 0 defines 
a submanifold of A invariant against the Hamiltonian flows. Likewise, the condition 
c=O defines an invariant submanifold. Thus, we are forced to consider four cases 
separately: (1) bc#O, (2) b=O, c=O, (3) b#O, c=O, (4) b=O, c#O. In each case the 
bracket (7.2)-(7.5) will be non-degenerate for those values of parameters which admit 
the Hamiltonian representation of the conformal algebra 8. Note, however, that none 
of the sets of parameters can be used to cover more than one case, i.e. the phase spaces 
that will be obtained cannot be considered as leaves of some Poisson structure on A. 

(1) bc#O. 'Conformal' choice of parameters: hi , hz, kl and k2 are arbitrary except 
that ( h ,  -h2)'+ (kl -k2)'#O; s=O, p = ~ : ( k l  -kz)  W, U =  -$ (k ,  -k z )  V, v =  t (hl  - h2)W, 
q=-!(hl -hz)V, where we have introduced auxiliary variables V, W: 

hi -hi- (ki - kz) v 
(hi -hd2+  (ki -kz)' 

ki -kz+ (hi -hz) v 
( h i - h ~ ) ~ + ( k i  - k d 2  

V =  W= V € R  

(in all, five parameters have left). For X = x C @ X e d ,  define 

Qx=Rx+K~IOglP+I+LxloglP-l +Mxloglbcl +Nxloglb/cl 

where 

R , = S d x ( ~ ( x ) U + ( x ) - X ( x ) U - ( x ) ) - ) D ( X )  loglP+I+fD(X) loglp-I (7.6) 

(7.7) 
S(X)=X' (+)  +X'(-) D(X)=X' (+)  -A''(-). 

The quantities Lx, Mx,  Nx have the same form as Kx, the corresponding matrices 
being 
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with 

~ A ( X ,  Y)=A' (X,  Y)-$( VS(X+)+ WS(X) ) (D(Y' )+D(Y- ) )  

+A( VS( Y+) + WS( Y - ) ) ( D ( p )  +D(X-))  

where 

A(X, Y ) = f ( w ( X + ,  Y + ) - w ( X ,  Y-) )+f (c i (X+,  Y+)-ui(x, Y-)). (7.8) 

It is worth noting that RXeO" x 0" even for X E ~ ;  further, the functional Rx properly 
generates the action of the algebra rtp on pi, vi(x), x&), but not on T, with the 
help of the bracket (6.1), the 2-cocycle being of the form (7.8). 

(2) b=c=O. In this case h l ,  h2, k , ,  k2 enter into (7.2)-(7.5) only through combina- 
tions h = h l + h 2 , k = k l + k 2  which can be arbitrary except that h2+k2#0; s=O, p =  
zkW, u=-zkV,  v=nhW, q=-ahV, where I I I 

k+hv  pf/= ~ 

h - k v  V= - 
h 2 + p  h2+k2 

VER 

(in all, three parameters). For X = X + @ X e d ,  define 

Qx= Rx + Kx loglpc I + Lx lOglP- I + Mx log14 

where Rx is given by (7.6); Kx,  Lx, Mx are of the form (7.7)~with 

0 1  v o  
K=-iY( 0 0  ) W O  

A(X, Y )  =A(X, Y )  -&( VS(x') + WS(X-))(D( Y') -D( Y-) )  

+&(VS(Y')+ W S ( Y - ) ) ( D ( y ) - D ( X ) ) .  

(3) b>O, c=O. ForX=X+@XErtp, define 

&=Rx+ Kx loglp, 1 + Lx logl p-1 + Mx logla1 + Nx loglbl 

where Rw is given by (7.6). Kx,  Lw, Mx, Nx are of the form (7.7). There are two sets 
of parameters which admit the Hamiltonian representation of d. 

(a) h, =h2=kl  =k2=u=u=0 ,p=  a ,  q= - a ,  SER. In this case I I 

K=O L=O 

A(X, Y)=A(x ,  Y )  - ~ ( D ( ~ " ) D ( Y - ) - D ( x ) D ( Y + ) ) .  

(b) p=q=u=o=O; hl, h2, k l ,  k2 ,  and ~ s are arbitrary except that 
l=s-4(hlk2-h2kl)#0. In this case 

A(X,  Y ) = A ( X ,  Y)+(41)-'(f(S(X+)S(Y-)-S(X)S(Y'))+B(X, Y ) )  
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B(X,  Y )=  -s(D(X')D(Y-) - D ( X ) D (  Y')) 

+kl(S(XI)D(Y-)-D(X)S(Y+))+kL(S(X+)D( Y')-D(X+)S(Y')) 

-hi(S(X)D( Y-)  - D ( X ) S (  Y-))  -h2(S(X)D( Y') - D(X+)S( Y-)). 

(4) b=O, c>O. ForX=X+@X&d, define 

&=Rx+ Kx lOglP+ I + Lx lOglP-l + M x  logla1 +Nx log1 CI 
where Rx is given by (7.6), Kx, Lx, Mx,  Nx are of the form (7.7). There are again two 
sets of parameters which admit the Hamiltonian representation of Sp .  

(a) h, = h2=kl =k2= U =  v =  0 , p  = a ,  q= - 3 ,  SSR. In this case I I 

K= 0 L=O 

A(X, Y )  =A'(X, Y )  + a(D(x")D( Y-)  - D ( X ) D (  Y')). 

(b) p=q=zi=v=O;  h l , h 2 , k l , k z ,  and s are arbitrary except that 
m=s+4(hlkz-hzkl)#0.  In this case 

A(X, Y)=A'(X,  Y ) + ( 4 m ) - ' ( a ( S ( X + ) S ( ~ ) - S ( X ) S ( r ) ) - B ( X ,  Y)). 

If X + ( x ) =  1, X(x)=- l ,  then I& is nothing but the Hamiltonian of the model. In 
all case considered in this section it looks as follows (note the difference from [7,8]): 

H =  br(U+(x)+ U-(x)) 

(7.9) 
s 

=Sbr(;.z(x)+~(q'(x))z+2 ezp(x)- q"(x)) 

Using spectral representation for the first integral, i.e. trace identity [18,20], one can 
prove that H is positive only on the phase spaces which are subsets of MO x MO x PSL,. 
The fields which constitute such phase spaces may possess one, two or no points of 
singularity (see proposition 3.3). For non-singular fields, the positiveness of the 
Hamiltonian is obvious from (1.4) that in this case is equivalent to (7.9). 
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Appendix 

Here the expressions for the constants appearing in formulae (3.4) are listed. 
(a) b=O, c=Oe(3.4a) with U*=; 10glQ*2P-/P+I. 

(-l)”-a-a2+(-l)”+a+ (- 1)” - 9- + (-1 )””9 +a2 q+=-  q- = 
lP-la2+lB+ I 10-1 + IP+la2 

(-1)”-9-+(-1)”+9+a2+ac 

IP-l +IP+l2 
q- = B:=c~IP*P-I 

(-l)”+a++a/c (-1)”-a-+ l/(ac) 

IP+l IP-l 
q+ +z+= - q + - T + = -  

(c) b#O,c=0-(3.4c) with B!=bzIP+p-I, 

(-I)’+a++a/c (-1Y-a- t d/c  
IP+ I IP-l 

q + + T + = -  q+- T + = -  
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